Yanhui Wang

joint work with Victoria Gould

York Semigroup

22nd February 2012

(Yanhui Wang)

Strongly T-proper left Ehresmann monoids

22nd February 2012 1 / 35

An inverse semigroup is called *proper* if $\mathcal{R} \cap \sigma = \iota$.

Let (X, f) be a presentation of a fixed group G. We construct a category $\mathbf{E}(X, f)$ as follows:

• The objects of the category $\mathbf{E}(X, f)$ are the pairs (g, M), where M is a proper inverse monoid and $g: X \to M$ such that $\langle Xg \rangle = M$ and

commutes.

An inverse semigroup is called *proper* if $\mathcal{R} \cap \sigma = \iota$.

Let (X, f) be a presentation of a fixed group G. We construct a category $\mathbf{E}(X, f)$ as follows:

• The objects of the category $\mathbf{E}(X, f)$ are the pairs (g, M), where M is a proper inverse monoid and $g: X \to M$ such that $\langle Xg \rangle = M$ and

commutes.

An inverse semigroup is called *proper* if $\mathcal{R} \cap \sigma = \iota$.

Let (X, f) be a presentation of a fixed group G. We construct a category $\mathbf{E}(X, f)$ as follows:

• The objects of the category $\mathbf{E}(X, f)$ are the pairs (g, M), where M is a proper inverse monoid and $g: X \to M$ such that $\langle Xg \rangle = M$ and

commutes.

Proper Inverse Monoids

• A morphism in $\mathbf{E}(X, f)$ from (g, M) to (h, N) is a morphism $\theta : M \to N$ such that the diagram

commutes.

The category $\mathbf{E}(X, f)$ is called the *category of X-generated proper inverse* monoids with maximum group image G.

Proper Inverse Monoids

• A morphism in $\mathbf{E}(X, f)$ from (g, M) to (h, N) is a morphism $\theta : M \to N$ such that the diagram

commutes.

The category $\mathbf{E}(X, f)$ is called the *category of X-generated proper inverse* monoids with maximum group image G.

Fact1: Let (X, f) be a presentation of a group G. Then $FIM(X)/\tau^*$ is the initial object in $\mathbf{E}(X, f)$, where

$$\tau = \{u^2 = u, \text{ whenever } u \in FIM(X) \text{ and } uf = 1 \text{ in } G\}$$

and τ^* is the congruence on FIM(X) generated by τ .

Fact2: The monoids $FIM(X)/\tau^*$ and the graph expansion M(X, f) of G are isomorphic.

Fact1: Let (X, f) be a presentation of a group G. Then $FIM(X)/\tau^*$ is the initial object in $\mathbf{E}(X, f)$, where

$$\tau = \{u^2 = u, \text{ whenever } u \in FIM(X) \text{ and } uf = 1 \text{ in } G\}$$

and τ^* is the congruence on FIM(X) generated by τ .

Fact2: The monoids $FIM(X)/\tau^*$ and the graph expansion M(X, f) of G are isomorphic.

Let $\Gamma = \Gamma(X, f)$ be the Cayley graph of $G = gp\langle X; f \rangle$.

- $V(\Gamma)$: = the set of vertices of $\Gamma(V(\Gamma) = G)$
- $E(\Gamma)$: = the set of edges of Γ

an edge:
$$(g, x, g(xf))$$
 $g \xrightarrow{x} g(xf)$

We define an action of the group G on Γ by

$$t\cdot v=tv$$
 for $t\in G$ and $v\in V(\Gamma)$

and

$$t \cdot (g, x, g(xf)) = (tg, x, tg(xf)), \text{ i.e.}$$

$$g \xrightarrow{x} \\ g(xf) \\ g(x$$

Image: A matrix of the second seco

Let $\Gamma = \Gamma(X, f)$ be the Cayley graph of $G = gp\langle X; f \rangle$. • $V(\Gamma)$: = the set of vertices of $\Gamma(V(\Gamma) = G)$

• $E(\Gamma)$: = the set of edges of Γ

an edge:
$$(g, x, g(xf))$$
 $g \xrightarrow{x} g(xf)$

We define an action of the group G on Γ by

 $t \cdot v = t v$ for $t \in G$ and $v \in V(\Gamma)$

and

$$t \cdot (g, x, g(xf)) = (tg, x, tg(xf)), \text{ i.e.}$$

$$g \xrightarrow{x} \\ g(xf) \\ g(x$$

Image: A matrix of the second seco

Let $\Gamma = \Gamma(X, f)$ be the Cayley graph of $G = gp\langle X; f \rangle$.

- V(Γ): = the set of vertices of Γ (V(Γ) = G)
- E(Γ): = the set of edges of Γ

an edge:
$$(g, x, g(xf))$$
 $\overset{\bullet}{g} \xrightarrow{X} \overset{\bullet}{\longrightarrow} \overset{\bullet}{g(xf)}$

We define an action of the group G on Γ by

$$t \cdot v = tv$$
 for $t \in G$ and $v \in V(\Gamma)$

and

$$t \cdot (g, x, g(xf)) = (tg, x, tg(xf)), \text{ i.e.}$$

$$g \xrightarrow{x} g(xf) \text{ becomes } g \xrightarrow{x} tg \xrightarrow{x} tg(xf)$$

- ∢ /⊐) - ∢

Let $\Gamma = \Gamma(X, f)$ be the Cayley graph of $G = gp\langle X; f \rangle$.

- V(Γ): = the set of vertices of Γ (V(Γ) = G)
- E(Γ): = the set of edges of Γ

an edge:
$$(g, x, g(xf))$$
 $\overset{\bullet}{g} \xrightarrow{X} \overset{\bullet}{\longrightarrow} \overset{\bullet}{g(xf)}$

We define an action of the group G on Γ by

$$t \cdot v = tv$$
 for $t \in G$ and $v \in V(\Gamma)$

and

$$t \cdot (g, x, g(xf)) = (tg, x, tg(xf)), \text{ i.e.}$$

$$\stackrel{\bullet}{g} \xrightarrow{x} \stackrel{\bullet}{\longrightarrow} g(xf) \text{ becomes } \stackrel{\bullet}{tg} \xrightarrow{x} \stackrel{\bullet}{\longrightarrow} tg(xf)$$

The graph expansion of $G = gp\langle X; f \rangle$ is defined by

 $M(X, f) = \{(\Delta, g) : \Delta \text{ is a finite connected subgraph of } \Gamma$ containing 1 and g as vertices}

with binary operation

$$(\Delta,g)(\Sigma,h) = (\Delta \cup g \cdot \Sigma, gh).$$

Fact: The graph expansion M(X, f) of G is an X-generated proper inverse monoid with the maximal group image G.

The graph expansion of $G = gp\langle X; f \rangle$ is defined by

 $M(X, f) = \{(\Delta, g) : \Delta \text{ is a finite connected subgraph of } \Gamma$ containing 1 and g as vertices}

with binary operation

$$(\Delta,g)(\Sigma,h) = (\Delta \cup g \cdot \Sigma, gh).$$

Fact: The graph expansion M(X, f) of G is an X-generated proper inverse monoid with the maximal group image G.

- V. Gould, Graph expansions of right cancellative monoids (1996)
- G.M.S. Gomes and V. Gould, Graph expansions of unipotent monoids (2000)
- V. Gould, Right cancellative and left ample monoids: Quasivarieties and proper covers (2000)
- C. Cornock, Proper left restriction monoids (2011)

Gomes and Gould:

 $\begin{array}{l} X{:=} \text{ a non-empty set} \\ E_X{:=} \text{ a semilattice constructed from } X \\ X^* \text{ acts on } E_X \text{ via order-preserving maps} \\ X^* * E_X{:=} \text{ the free semigroup product of } X^* \text{ and } E_X \\ \mathcal{P}(X^* * E_X)/ \sim := \text{ the free left Ehresmann monoid } FLE(X) \end{array}$

Kambites

A free left Ehresmann monoid on a given set is a collection of (isomorphism types of) edge-labelled directed trees under a natural combinatorial multiplication.

Gomes and Gould:

 $\begin{array}{l} X{:=} \text{ a non-empty set} \\ E_X{:=} \text{ a semilattice constructed from } X \\ X^* \text{ acts on } E_X \text{ via order-preserving maps} \\ X^* * E_X{:=} \text{ the free semigroup product of } X^* \text{ and } E_X \\ \mathcal{P}(X^* * E_X)/ \sim := \text{ the free left Ehresmann monoid } FLE(X) \end{array}$

Kambites

A free left Ehresmann monoid on a given set is a collection of (isomorphism types of) edge-labelled directed trees under a natural combinatorial multiplication.

Let *M* be a left Ehresmann monoid with $M = \langle T \cup E \rangle_{(2,1,0)}$ and *T* a submonoid. We say that *M* is *strongly T*-*proper* if for any $u, v \in T$,

$$u \sigma_E v \Rightarrow u^{\dagger}v = v^{\dagger}u.$$

Let (X, f) be a presentation of a fixed monoid S. Then we form a category **SPLE**(X, f, S). The objects of **SPLE**(X, f, S) are pairs (g, M) such that $\langle Xg \rangle = M$ and

commutes, where M is a strongly T-proper left Ehresmann monoid.

Let *M* be a left Ehresmann monoid with $M = \langle T \cup E \rangle_{(2,1,0)}$ and *T* a submonoid. We say that *M* is *strongly T*-*proper* if for any $u, v \in T$,

$$u \sigma_E v \Rightarrow u^{\dagger}v = v^{\dagger}u.$$

Let (X, f) be a presentation of a fixed monoid S. Then we form a category SPLE(X, f, S). The objects of SPLE(X, f, S) are pairs (g, M) such that $\langle Xg \rangle = M$ and

commutes, where M is a strongly T-proper left Ehresmann monoid.

Let *M* be a left Ehresmann monoid with $M = \langle T \cup E \rangle_{(2,1,0)}$ and *T* a submonoid. We say that *M* is *strongly T*-*proper* if for any $u, v \in T$,

$$u \sigma_E v \Rightarrow u^{\dagger}v = v^{\dagger}u.$$

Let (X, f) be a presentation of a fixed monoid S. Then we form a category **SPLE**(X, f, S). The objects of **SPLE**(X, f, S) are pairs (g, M) such that $\langle Xg \rangle = M$ and

commutes, where M is a strongly T-proper left Ehresmann monoid.

Let *M* be a left Ehresmann monoid with $M = \langle T \cup E \rangle_{(2,1,0)}$ and *T* a submonoid. We say that *M* is *strongly T*-*proper* if for any $u, v \in T$,

$$u \sigma_E v \Rightarrow u^{\dagger}v = v^{\dagger}u.$$

Let (X, f) be a presentation of a fixed monoid S. Then we form a category **SPLE**(X, f, S). The objects of **SPLE**(X, f, S) are pairs (g, M) such that $\langle Xg \rangle = M$ and

commutes, where M is a strongly T-proper left Ehresmann monoid.

A morphism in **SPLE**(X, f, S) from (g, M) to (h, N) is a morphism $\theta : M \to N$ such that the diagram

commutes.

The category **SPLE**(X, f, S) is called the *category of* X-generated strongly T-proper left Ehresmann monoids with maximum monoid image₃S.

(Yanhui Wang)

Strongly T-proper left Ehresmann monoids

22nd February 2012

10 / 35

A morphism in **SPLE**(X, f, S) from (g, M) to (h, N) is a morphism $\theta: M \to N$ such that the diagram

commutes.

The category **SPLE**(X, f, S) is called the *category of X-generated strongly T-proper left Ehresmann monoids with maximum monoid image* S.

Fact3: Let (X, f, S) be a presentation of a monoid S. Then $FLE(X)/\rho^*$ is the initial object in **SPLE**(X, f, S), where

$$\rho = \{u^{\dagger}v = v^{\dagger}u, \text{ whenever } u, v \in X^* \text{ and } uf = vf \text{ in } S\}$$

and ρ^* is the congruence on FLE(X) generated by ρ .

Problem: Show how to directly solve the word problem for $FLE(X)/\rho^*$.

Fact3: Let (X, f, S) be a presentation of a monoid S. Then $FLE(X)/\rho^*$ is the initial object in **SPLE**(X, f, S), where

$$\rho = \{u^{\dagger}v = v^{\dagger}u, \text{ whenever } u, v \in X^* \text{ and } uf = vf \text{ in } S\}$$

and ρ^* is the congruence on FLE(X) generated by ρ .

Problem: Show how to directly solve the word problem for $FLE(X)/\rho^*$.

Edge-labelled Directed Trees

1-rooted c-graphs

1-rooted c-graphs

Suppose that (a)f = (ab)f

Rule 1: a linear path starting with a branching vertex Suppose that (a)f = (ab)f.

Rule 2: two linear paths starting with the same branching vertex • $({q}, {})$ • $(\{i\}, \{B\})$ ●({h}, {})

Rule 2: two linear paths starting with the same branching vertex Suppose that (a)f = (ab)f and (c)f = (d)f.

Reducing a Pinched Graph

Examples of allowed retractions:

Case I: Circles

Reducing a Pinched Graph

Examples of allowed retractions:

Case I: Circles

18 / 35

Case I: Circles

Case II: Parallel paths I (no tails)

Case I: Circles

Case II: Parallel paths I (no tails)

Case III: Parallel paths II (containing tails)

(Yanhui Wang)

20 / 35

Case III: Parallel paths II (containing tails)

Case IV: Tails

Case IV: Tails

22 / 35

Reducing a Pinched Graph: Step 2-coloring

Let Σ be a pinched 1-rooted *c*-graph.

If there exists an A-subgraph of Σ , which is a linear path and a tail of a B-subgraph of Σ , then we color the A-subgraph in B and denote it by $\mathbf{d}(\Sigma)$.

Reducing a Pinched Graph: Step 2-coloring

Let Σ be a pinched 1-rooted *c*-graph.

If there exists an A-subgraph of Σ , which is a linear path and a tail of a B-subgraph of Σ , then we color the A-subgraph in B and denote it by $\mathbf{d}(\Sigma)$.

23 / 35

Reducing a Pinched Graph: Step 2-coloring

Let Σ be a pinched 1-rooted *c*-graph.

If there exists an A-subgraph of Σ , which is a linear path and a tail of a B-subgraph of Σ , then we color the A-subgraph in B and denote it by $\mathbf{d}(\Sigma)$.

24 / 35

Suppose that (e)f = (ed)f.

Suppose that (e)f = (ed)f.

25 / 35

 $pd(\Sigma) :=$ the pinched graph of $d(\Sigma)$. Suppose that (e)f = (ed)f.

A pinched 1-rooted *c*-graph Σ is reduced if there is no any non-trivial retract of Σ and $pd(\Sigma) = \Sigma$.

 $pd(\Sigma) :=$ the pinched graph of $d(\Sigma)$. Suppose that (e)f = (ed)f.

A pinched 1-rooted *c*-graph Σ is reduced if there is no any non-trivial retract of Σ and $pd(\Sigma) = \Sigma$.

22nd February 2012

A Unique Reduced Pinched Graph in Each ρ^* -class

Lemma 1 Let P, Q be 1-rooted *c*-graphs and U, V be linear 1-rooted *c*-graphs satisfying that Uf = Vf. If $\Sigma = P \times U^{\dagger} \times V \times Q$ and $\Gamma = P \times V^{\dagger} \times U \times Q$, then $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$.

Lemma 2 If Σ is an 1-rooted *c*-graph and Γ is a retract of Σ , then $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$.

Theorem 1 If Σ and Γ are 1-rooted *c*-graphs with $\Sigma \rho^* \Gamma$, then $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$. Remark: $\Sigma \rho^* \Gamma$ if and only if there exists a sequence

$$\Sigma = P_1 U_1^{\dagger} V_1 Q_1 \quad P_2 V_2^{\dagger} U_2 Q_2 = \dots = P_n V^{\dagger} U_n Q_n$$
$$P_1 V_1^{\dagger} U_1 Q_1 = P_2 U_2^{\dagger} V_2 Q_2 \quad \dots \quad P_n U_n^{\dagger} V_n Q_n = \Gamma$$

where P_i , Q_i are 1-rooted c-graphs and U_i , V_i are linear 1-rooted c-graphs satisfying that $U_i f = V_i f$.

27 / 35

A Unique Reduced Pinched Graph in Each ρ^* -class

Lemma 1 Let P, Q be 1-rooted *c*-graphs and U, V be linear 1-rooted *c*-graphs satisfying that Uf = Vf. If $\Sigma = P \times U^{\dagger} \times V \times Q$ and $\Gamma = P \times V^{\dagger} \times U \times Q$, then $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$.

Lemma 2 If Σ is an 1-rooted *c*-graph and Γ is a retract of Σ , then $rp(\Sigma) = rp(\Gamma)$.

Theorem 1 If Σ and Γ are 1-rooted *c*-graphs with $\Sigma \rho^* \Gamma$, then $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$. Remark: $\Sigma \rho^* \Gamma$ if and only if there exists a sequence

$$\Sigma = P_1 U_1^{\dagger} V_1 Q_1 \quad P_2 V_2^{\dagger} U_2 Q_2 = \dots = P_n V^{\dagger} U_n Q_n$$
$$P_1 V_1^{\dagger} U_1 Q_1 = P_2 U_2^{\dagger} V_2 Q_2 \quad \dots \quad P_n U_n^{\dagger} V_n Q_n = \Gamma$$

where P_i , Q_i are 1-rooted c-graphs and U_i , V_i are linear 1-rooted c-graphs satisfying that $U_i f = V_i f$.

27 / 35

A Unique Reduced Pinched Graph in Each ρ^* -class

Lemma 1 Let P, Q be 1-rooted *c*-graphs and U, V be linear 1-rooted *c*-graphs satisfying that Uf = Vf. If $\Sigma = P \times U^{\dagger} \times V \times Q$ and $\Gamma = P \times V^{\dagger} \times U \times Q$, then $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$.

Lemma 2 If Σ is an 1-rooted *c*-graph and Γ is a retract of Σ , then $rp(\Sigma) = rp(\Gamma)$.

Theorem 1 If Σ and Γ are 1-rooted *c*-graphs with $\Sigma \rho^* \Gamma$, then $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$. Remark: $\Sigma \rho^* \Gamma$ if and only if there exists a sequence

$$\Sigma = P_1 U_1^{\dagger} V_1 Q_1 \quad P_2 V_2^{\dagger} U_2 Q_2 = \dots = P_n V^{\dagger} U_n Q_n$$
$$P_1 V_1^{\dagger} U_1 Q_1 = P_2 U_2^{\dagger} V_2 Q_2 \quad \dots \quad P_n U_n^{\dagger} V_n Q_n = \Gamma$$

where P_i , Q_i are 1-rooted c-graphs and U_i , V_i are linear 1-rooted c-graphs satisfying that $U_i f = V_i f$.

Step 2:

Step 3:

Theorem 2 Let Γ be a pinched graph, and let Γ_1 and Γ_2 be unpinching graphs of Γ . Then $\Gamma_1 \ \rho^* \ \Gamma_2$.

outline of the proof

• For each *c*-subgraph *K* of Γ , any two unpinching graphs of *K* are ρ^* -related.

• For any connected *c*-subgraphs K_1 and K_2 of Γ , if W_1 and W_2 are unpinching graphs of K_1 , and U_1 and U_2 are unpinching graphs of K_2 , then $W_1U_1 \rho^* W_2U_2$.

Proposition 1 Let Σ be a 1-rooted c-graph. Then $\Sigma \rho^*$ unp (Σ) .

Theorem 2 Let Γ be a pinched graph, and let Γ_1 and Γ_2 be unpinching graphs of Γ . Then $\Gamma_1 \ \rho^* \ \Gamma_2$.

outline of the proof

• For each *c*-subgraph *K* of Γ , any two unpinching graphs of *K* are ρ^* -related.

• For any connected *c*-subgraphs K_1 and K_2 of Γ , if W_1 and W_2 are unpinching graphs of K_1 , and U_1 and U_2 are unpinching graphs of K_2 , then $W_1U_1 \rho^* W_2U_2$.

Proposition 1 Let Σ be a 1-rooted c-graph. Then $\Sigma \rho^* \operatorname{unp}(\Sigma)$.

Theorem 3 If Σ and Γ are 1-rooted c-graphs with $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$, then $\Sigma \rho^* \Gamma$.

Theorem 1 If Σ and Γ are 1-rooted *c*-graphs with $\Sigma \rho^* \Gamma$, then $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$.

Theorem 4 If Σ and Γ are 1-rooted *c*-graphs, then $\Sigma \rho^* \Gamma$ if and only if $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$.

- Theorem 3 If Σ and Γ are 1-rooted c-graphs with $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$, then $\Sigma \rho^* \Gamma$.
- Theorem 1 If Σ and Γ are 1-rooted *c*-graphs with $\Sigma \rho^* \Gamma$, then $rp(\Sigma) = rp(\Gamma)$.

Theorem 4 If Σ and Γ are 1-rooted *c*-graphs, then $\Sigma \rho^* \Gamma$ if and only if $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$.

- Theorem 3 If Σ and Γ are 1-rooted c-graphs with $\mathbf{rp}(\Sigma) = \mathbf{rp}(\Gamma)$, then $\Sigma \rho^* \Gamma$.
- Theorem 1 If Σ and Γ are 1-rooted *c*-graphs with $\Sigma \rho^* \Gamma$, then $rp(\Sigma) = rp(\Gamma)$.
- Theorem 4 If Σ and Γ are 1-rooted *c*-graphs, then $\Sigma \rho^* \Gamma$ if and only if $rp(\Sigma) = rp(\Gamma)$.