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Proper Inverse Monoids

An inverse semigroup is called proper if R∩ σ = ι.

Let (X , f ) be a presentation of a fixed group G . We construct a category
E(X , f ) as follows:
• The objects of the category E(X , f ) are the pairs (g ,M), where M is a
proper inverse monoid and g : X → M such that 〈Xg〉 = M and

X

M
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?

σ]M

- G

f

-

commutes.
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Proper Inverse Monoids

• A morphism in E(X , f ) from (g ,M) to (h,N) is a morphism θ : M → N
such that the diagram

X

M

g

?

N
σ]N

-

�

h

�

θ

G

f

-

σ ]
M

-

commutes.
The category E(X , f ) is called the category of X -generated proper inverse
monoids with maximum group image G.
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Proper Inverse Monoids

Fact1: Let (X , f ) be a presentation of a group G . Then FIM(X )/τ∗ is the
initial object in E(X , f ), where

τ = {u2 = u, whenever u ∈ FIM(X ) and uf = 1 in G}

and τ∗ is the congruence on FIM(X ) generated by τ .

Fact2: The monoids FIM(X )/τ∗ and the graph expansion M(X , f ) of G
are isomorphic.
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Graph Expansions of Groups

Let Γ = Γ(X , f ) be the Cayley graph of G = gp〈X ; f 〉.
• V (Γ): = the set of vertices of Γ (V (Γ) = G )
• E (Γ): = the set of edges of Γ

an edge: (g , x , g(xf )) •
g

•
g(xf )

x

We define an action of the group G on Γ by

t · v = tv for t ∈ G and v ∈ V (Γ)

and
t · (g , x , g(xf )) = (tg , x , tg(xf )), i.e.

•
g

•
g(xf )

becomes •
tg

•
tg(xf )

x x
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Graph Expansions of Groups

The graph expansion of G = gp〈X ; f 〉 is defined by

M(X , f ) = {(∆, g) : ∆ is a finite connected subgraph of Γ

containing 1 and g as vertices}

with binary operation

(∆, g)(Σ, h) = (∆ ∪ g · Σ, gh).

Fact: The graph expansion M(X , f ) of G is an X -generated proper
inverse monoid with the maximal group image G .
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The Free Left Ehresmann Monoid

Gomes and Gould:

X := a non-empty set
EX := a semilattice constructed from X
X ∗ acts on EX via order-preserving maps
X ∗ ∗ EX : = the free semigroup product of X ∗ and EX

P(X ∗ ∗ EX )/ ∼:= the free left Ehresmann monoid FLE (X )

Kambites

A free left Ehresmann monoid on a given set is a collection of
(isomorphism types of) edge-labelled directed trees under a natural
combinatorial multiplication.
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Strongly T -proper Left Ehresmann Monoids

Let M be a left Ehresmann monoid with M = 〈T ∪ E 〉(2,1,0) and T a
submonoid. We say that M is strongly T -proper if for any u, v ∈ T ,

u σE v ⇒ u†v = v †u.

Let (X , f ) be a presentation of a fixed monoid S . Then we form a
category SPLE(X , f , S). The objects of SPLE(X , f , S) are pairs (g ,M)
such that 〈Xg〉 = M and

X

M

g

?

σ]M

- S

f

-

commutes, where M is a strongly T -proper left Ehresmann monoid.
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Strongly T -proper Left Ehresmann Monoids
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θ : M → N such that the diagram

X

M

g

?

N
σ]N

-

�

h

�

θ

S

f

-

σ ]
M

-

commutes.
The category SPLE(X , f ,S) is called the category of X -generated strongly
T -proper left Ehresmann monoids with maximum monoid image S.

( Yanhui Wang) Strongly T -proper left Ehresmann monoids 22nd February 2012 10 / 35



Strongly T -proper Left Ehresmann Monoids

A morphism in SPLE(X , f , S) from (g ,M) to (h,N) is a morphism
θ : M → N such that the diagram

X

M

g

?

N
σ]N

-

�

h

�

θ

S

f

-

σ ]
M

-

commutes.
The category SPLE(X , f ,S) is called the category of X -generated strongly
T -proper left Ehresmann monoids with maximum monoid image S.

( Yanhui Wang) Strongly T -proper left Ehresmann monoids 22nd February 2012 10 / 35



Strongly T -proper Left Ehresmann Monoids

Fact3: Let (X , f , S) be a presentation of a monoid S . Then FLE (X )/ρ∗ is
the initial object in SPLE(X , f , S), where

ρ = {u†v = v †u, whenever u, v ∈ X ∗ and uf = vf in S}

and ρ∗ is the congruence on FLE (X ) generated by ρ.

Problem: Show how to directly solve the word problem for FLE (X )/ρ∗.
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Edge-labelled Directed Trees

X := a non-empty set

•Σ :

•

• • •

•

•

•

•

•

•

⊗

a†ab2(cb)†db†ed†d

a

a b b

d

c

b

b

e d

d
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1-rooted c-graphs

S1:= a monoid such that ab 6= 1S for all a, b ∈ S
f : X → S with S = 〈Xf 〉 X , C , V := non-empty sets

•
({1}, {B})

•
({u}, {})

•
({x}, {})

•
({y}, {})

•

•({v}, {G})

•({w}, {})

•({h}, {})

•

•({q}, {})

•({j}, {})

⊗({k}, {⊗,G})

({z}, {R}) ({i}, {B})

a

a b b

d

c

b

b

e
d

d
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Pinching Methods

Rule 1: a linear path starting with a branching vertex

•
({1}, {B})

•
({u}, {})

•
({x}, {})

•
({y}, {})

•

•({v}, {G})

•({w}, {})

•({h}, {})

•

•({q}, {})

•({j}, {})

⊗({k}, {⊗,G})

({z}, {R}) ({i}, {B})

a

a b b

d

c

b

b

e
d

d

Suppose that (a)f = (ab)f .
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Pinching Methods

Rule 1: a linear path starting with a branching vertex
Suppose that (a)f = (ab)f .

•
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Pinching Methods

Rule 2: two linear paths starting with the same branching vertex

•
({1}, {B})

•
({u}, {})

•

•

•({w}, {})

•({h}, {})

•
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•
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⊗({k}, {⊗,G})

({v}, {G})

({x, y, z}, {R}) ({i}, {B})

a

a

b

b

d
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b

b

e
d

d

Suppose that (a)f = (ab)f and (c)f = (d)f .
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Pinching Methods

Rule 2: two linear paths starting with the same branching vertex
Suppose that (a)f = (ab)f and (c)f = (d)f .

•
({1}, {B})

• •

•({h}, {})

•
({i}, {B})

•({q}, {})

⊗
({j , k}, {⊗,G})

({x, y, z, u}, {R})
({v, w}, {G})

a

a

b

b

c

d

b

b

e d

d
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Reducing a Pinched Graph

Examples of allowed retractions:

•
({1}, {B})

• •

•({h}, {})

•
({i}, {B})

•({q}, {})

⊗
({j , k}, {⊗,G})

({x, y, z, u}, {R})
({v, w}, {G})

a

a

b

b

c

d

b

b

e d

d

Case I: Circles
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Reducing a Pinched Graph: Step 1-Retraction

Case I: Circles

•
({1}, {B})

• •

•({h}, {})

•
({i}, {B})

•({q}, {})

⊗
({j , k}, {⊗,G})

({x, y, z}, {R})
({v, w}, {G})

a

a

b c

d

b

b

e d

d

Case II: Parallel paths I (no tails)
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Reducing a Pinched Graph: Step 1-Retraction

•
({1}, {B})

• •

•({h}, {})
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({x, y, z}, {R})
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a

b c

d

b

b

e d

Case III: Parallel paths II (containing tails)
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Reducing a Pinched Graph: Step 1-Retraction

•
({1}, {B})

• • •
({i}, {B})

•({q}, {})

⊗
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({x, y}, {R})
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Reducing a Pinched Graph: Step 2-coloring

Let Σ be a pinched 1-rooted c-graph.

If there exists an A-subgraph of Σ, which is a linear path and a tail of a
B-subgraph of Σ, then we color the A-subgraph in B and denote it by
d(Σ).

•
({1}, {B})

• • •
({i}, {B})

•({q}, {})

⊗
({k}, {⊗,G})

({x, y}, {R})
({v, w}, {G})

a

b c

d

b

e d
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Reducing a Pinched Graph: Step 3-pinching

pd(Σ) := the pinched graph of d(Σ).

•
({1}, {B})

• • •
({i}, {})

•({q}, {})

⊗
({k}, {⊗,G})

({x, y}, {R})
({v, w}, {G})

a

b c

d

b

e d

Suppose that (e)f = (ed)f .
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Reducing a Pinched Graph: Step 3-pinching

pd(Σ) := the pinched graph of d(Σ).

Suppose that (e)f = (ed)f .

•
({1}, {B})

• • ⊗({i, k}, {⊗,G})

•({q}, {})

({x, y}, {R})
({v, w}, {G})

a

b c

d

b

e

d

A pinched 1-rooted c-graph Σ is reduced if there is no any non-trivial
retract of Σ and pd(Σ) = Σ.
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A Unique Reduced Pinched Graph in Each ρ∗-class

Lemma 1 Let P,Q be 1-rooted c-graphs and U,V be linear 1-rooted
c-graphs satisfying that Uf = Vf . If Σ = P × U† × V × Q and
Γ = P × V † × U × Q, then rp(Σ) = rp(Γ).

Lemma 2 If Σ is an 1-rooted c-graph and Γ is a retract of Σ, then
rp(Σ) = rp(Γ).

Theorem 1 If Σ and Γ are 1-rooted c-graphs with Σ ρ∗ Γ, then
rp(Σ) = rp(Γ).
Remark: Σ ρ∗ Γ if and only if there exists a sequence

Σ = P1U
†
1V1Q1 P2V

†
2U2Q2 = · · · = PnV

†UnQn

P1V
†
1U1Q1 = P2U

†
2V2Q2 · · · PnU

†
nVnQn = Γ

where Pi , Qi are 1-rooted c-graphs and Ui , Vi are linear 1-rooted c-graphs
satisfying that Ui f = Vi f .
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Unpinching methods

Examples:

•
({1}, {B})

• • ⊗({i, k}, {⊗,G})

•({q}, {})

({x, y}, {R})
({v, w}, {G})

a

b c

d

b

e

d
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Unpinching methods

Step 1:

•({1}, {B}) •({x, y}, {R})

•({x, y}, {R}) •({v, w}, {G})

•({v, w}, {G}) ⊗({i, k}, {⊗,G})

•({q}, {})

a

b

c

d

b

e

d
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Unpinching methods

Step 2:

•({1}, {B}) •({x, y}, {R})

⇓

•({1}, {B}) •
({x}, {})

•({ y}, {R})

•({1}, {B}) •
({y}, {})

•({ x}, {R})

a

b

a b

a b
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Unpinching methods

Step 2:

•({x, y}, {R}) •({v, w}, {G})
⇓

•({x, y}, {R})
•

({v}, {})

•
({w}, {G})

•({x, y}, {R})
•

({w}, {})

•
({v}, {G})

•({x, y}, {R})
•({v}, {G})

•({w}, {})

•({x, y}, {R})
•({w}, {G)

•({v}, {})

c

d

c

d

c

d

c

d

c

d
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Unpinching methods

Step 2:

•({v, w}, {G}) ⊗({i, k}, {⊗,G})

•({q}, {})

⇓

•({v, w}, {G})

•({q}, {})

•
({i}, {})

⊗({k}, {⊗,G})

•({v, w}, {G})

•({q}, {})

•
({k}, {})

⊗({i}, {⊗,G})

b

e

d

b
e d

b
e d
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Unpinching Methods

Step 3:

•
({1}, {B})

•
({x}, {})

• •

•({w}, {})
•

({i}, {})

•({q}, {})

⊗
({k}, {⊗,G})

({v}, {G})
({y}, {R})

a b d

c

b

e

d

•
({1}, {B})

•
({x}, {})

• •

•({w}, {})
•

({i}, {})

•({q}, {})

⊗
({k}, {⊗,G})

({v}, {G})
({y}, {R})

a b c

d

b

e

d
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Unpinching Graphs Being ρ∗-related

Theorem 2 Let Γ be a pinched graph, and let Γ1 and Γ2 be unpinching
graphs of Γ. Then Γ1 ρ

∗ Γ2.

outline of the proof
• For each c-subgraph K of Γ, any two unpinching graphs of K are
ρ∗-related.
• For any connected c-subgraphs K1 and K2 of Γ, if W1 and W2 are
unpinching graphs of K1, and U1 and U2 are unpinching graphs of K2,
then W1U1 ρ

∗ W2U2.

Proposition 1 Let Σ be a 1-rooted c-graph. Then Σ ρ∗ unp(Σ).
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Word Problems

Theorem 3 If Σ and Γ are 1-rooted c-graphs with rp(Σ) = rp(Γ), then
Σ ρ∗ Γ.

Theorem 1 If Σ and Γ are 1-rooted c-graphs with Σ ρ∗ Γ, then
rp(Σ) = rp(Γ).

Theorem 4 If Σ and Γ are 1-rooted c-graphs, then Σ ρ∗ Γ if and only if
rp(Σ) = rp(Γ).
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