# Strongly T-proper left Ehresmann monoids 

Yanhui Wang<br>joint work with Victoria Gould

York Semigroup
22nd February 2012

## Proper Inverse Monoids

An inverse semigroup is called proper if $\mathcal{R} \cap \sigma=\iota$.
Let $(X, f)$ be a presentation of a fixed group $G$. We construct a category $\mathbf{E}(X, f)$ as follows:

- The objects of the category $E(X, f)$ are the pairs $(g, M)$, where $M$ is a proper inverse monoid and $g: X \rightarrow M$ such that $\langle X g\rangle=M$ and



## Proper Inverse Monoids

An inverse semigroup is called proper if $\mathcal{R} \cap \sigma=\iota$.
Let $(X, f)$ be a presentation of a fixed group $G$. We construct a category $\mathbf{E}(X, f)$ as follows:

- The objects of the category $E(X, f)$ are the pairs $(g, M)$, where $M$ is a proper inverse monoid and $g: X \rightarrow M$ such that $\langle X g\rangle=M$ and



## Proper Inverse Monoids

An inverse semigroup is called proper if $\mathcal{R} \cap \sigma=\iota$.
Let $(X, f)$ be a presentation of a fixed group $G$. We construct a category $\mathbf{E}(X, f)$ as follows:

- The objects of the category $\mathbf{E}(X, f)$ are the pairs $(g, M)$, where $M$ is a proper inverse monoid and $g: X \rightarrow M$ such that $\langle X g\rangle=M$ and

commutes.


## Proper Inverse Monoids

- A morphism in $\mathbf{E}(X, f)$ from $(g, M)$ to $(h, N)$ is a morphism $\theta: M \rightarrow N$ such that the diagram

commutes.
The category $\mathbf{E}(X, f)$ is called the category of $X$-generated proper inverse monoids with maximum group image $G$.


## Proper Inverse Monoids

- A morphism in $\mathbf{E}(X, f)$ from $(g, M)$ to $(h, N)$ is a morphism $\theta: M \rightarrow N$ such that the diagram

commutes.
The category $\mathbf{E}(X, f)$ is called the category of $X$-generated proper inverse monoids with maximum group image $G$.


## Proper Inverse Monoids

Fact1: Let $(X, f)$ be a presentation of a group $G$. Then $\operatorname{FIM}(X) / \tau^{*}$ is the initial object in $\mathbf{E}(X, f)$, where

$$
\tau=\left\{u^{2}=u, \text { whenever } u \in F I M(X) \text { and } u f=1 \text { in } G\right\}
$$

and $\tau^{*}$ is the congruence on $\operatorname{FIM}(X)$ generated by $\tau$.
Fact2: The monoids $\operatorname{FIM}(X) / \tau^{*}$ and the graph expansion $M(X, f)$ of $G$ are isomorphic.

## Proper Inverse Monoids

Fact1: Let $(X, f)$ be a presentation of a group $G$. Then $\operatorname{FIM}(X) / \tau^{*}$ is the initial object in $\mathbf{E}(X, f)$, where

$$
\tau=\left\{u^{2}=u, \text { whenever } u \in F I M(X) \text { and } u f=1 \text { in } G\right\}
$$

and $\tau^{*}$ is the congruence on $\operatorname{FIM}(X)$ generated by $\tau$.
Fact2: The monoids FIM $(X) / \tau^{*}$ and the graph expansion $M(X, f)$ of $G$ are isomorphic.

## Graph Expansions of Groups

Let $\Gamma=\Gamma(X, f)$ be the Cayley graph of $G=g p\langle X ; f\rangle$.

- $E(\Gamma):=$ the set of edges of $\Gamma$



## We define an action of the group $G$ on $\Gamma$ by

$$
t \cdot v=t v \text { for } t \in G \text { and } v \in V(\Gamma)
$$

$$
t \cdot(g, x, g(x f))=(\operatorname{tg}, x, \operatorname{tg}(x f)), \text { i.e. }
$$

## Graph Expansions of Groups

Let $\Gamma=\Gamma(X, f)$ be the Cayley graph of $G=g p\langle X ; f\rangle$.

- $V(\Gamma):=$ the set of vertices of $\Gamma(V(\Gamma)=G)$


## We define an action of the group $G$ on 「 by

and


$$
t \cdot v=t v \text { for } t \in G \text { and } v \in V(\Gamma)
$$

becomes

## Graph Expansions of Groups

Let $\Gamma=\Gamma(X, f)$ be the Cayley graph of $G=g p\langle X ; f\rangle$.

- $V(\Gamma):=$ the set of vertices of $\Gamma(V(\Gamma)=G)$
- $E(\Gamma):=$ the set of edges of $\Gamma$
an edge: $\quad(g, x, g(x f))$



## We define an action of the group $G$ on 「 by

$$
t \cdot v=t v \text { for } t \in G \text { and } v \in V(\Gamma)
$$

and
becomes


## Graph Expansions of Groups

Let $\Gamma=\Gamma(X, f)$ be the Cayley graph of $G=g p\langle X ; f\rangle$.

- $V(\Gamma):=$ the set of vertices of $\Gamma(V(\Gamma)=G)$
- $E(\Gamma):=$ the set of edges of $\Gamma$

$$
\text { an edge: } \quad(g, x, g(x f))
$$



We define an action of the group $G$ on $\Gamma$ by

$$
t \cdot v=t v \text { for } t \in G \text { and } v \in V(\Gamma)
$$

and


## Graph Expansions of Groups

The graph expansion of $G=g p\langle X ; f\rangle$ is defined by

$$
M(X, f)=\{(\Delta, g): \Delta \text { is a finite connected subgraph of } \Gamma
$$ containing 1 and $g$ as vertices $\}$

with binary operation

$$
(\Delta, g)(\Sigma, h)=(\Delta \cup g \cdot \Sigma, g h)
$$

Fact: The graph expansion $M(X, f)$ of $G$ is an $X$-generated proper inverse monoid with the maximal group image $G$.

## Graph Expansions of Groups

The graph expansion of $G=g p\langle X ; f\rangle$ is defined by

$$
M(X, f)=\{(\Delta, g): \Delta \text { is a finite connected subgraph of } \Gamma
$$ containing 1 and $g$ as vertices $\}$

with binary operation

$$
(\Delta, g)(\Sigma, h)=(\Delta \cup g \cdot \Sigma, g h)
$$

Fact: The graph expansion $M(X, f)$ of $G$ is an $X$-generated proper inverse monoid with the maximal group image $G$.

## Historical Works

- V. Gould, Graph expansions of right cancellative monoids (1996)
- G.M.S. Gomes and V. Gould, Graph expansions of unipotent monoids (2000)
- V. Gould, Right cancellative and left ample monoids: Quasivarieties and proper covers (2000)
- C. Cornock, Proper left restriction monoids (2011)


## The Free Left Ehresmann Monoid

Gomes and Gould:
$X:=$ a non-empty set
$E_{X}:=$ a semilattice constructed from $X$
$X^{*}$ acts on $E_{X}$ via order-preserving maps
$X^{*} * E_{X}$ : = the free semigroup product of $X^{*}$ and $E_{X}$ $\mathcal{P}\left(X^{*} * E_{X}\right) / \sim:=$ the free left Ehresmann monoid $\operatorname{FLE}(X)$

## Kambites

A free left Ehresmann monoid on a given set is a collection of
(isomorphism types of) edge-labelled directed trees under a natural
combinatorial multiplication.

## The Free Left Ehresmann Monoid

Gomes and Gould:

$$
\begin{aligned}
& X:=\text { a non-empty set } \\
& E_{X}:=\text { a semilattice constructed from } X \\
& X^{*} \text { acts on } E_{X} \text { via order-preserving maps } \\
& X^{*} * E_{X}:=\text { the free semigroup product of } X^{*} \text { and } E_{X} \\
& \mathcal{P}\left(X^{*} * E_{X}\right) / \sim:=\text { the free left Ehresmann monoid } F L E(X)
\end{aligned}
$$

Kambites
A free left Ehresmann monoid on a given set is a collection of (isomorphism types of) edge-labelled directed trees under a natural combinatorial multiplication.

## Strongly $T$-proper Left Ehresmann Monoids

Let $M$ be a left Ehresmann monoid with $M=\langle T \cup E\rangle_{(2,1,0)}$ and $T$ a submonoid. We say that $M$ is strongly $T$-proper if for any $u, v \in T$,

$$
u \sigma_{E} v \Rightarrow u^{\dagger} v=v^{\dagger} u
$$

Let $(X, f)$ be a presentation of a fixed monoid $S$. Then we form a category $\operatorname{SPLE}(X, f, S)$. The objects of $\operatorname{SPLE}(X, f, S)$ are pairs $(g, M)$ such that $\langle X g\rangle=M$ and


## Strongly $T$-proper Left Ehresmann Monoids

Let $M$ be a left Ehresmann monoid with $M=\langle T \cup E\rangle_{(2,1,0)}$ and $T$ a submonoid. We say that $M$ is strongly $T$-proper if for any $u, v \in T$,

$$
u \sigma_{E} v \Rightarrow u^{\dagger} v=v^{\dagger} u
$$

Let $(X, f)$ be a presentation of a fixed monoid $S$. Then we form a category $\operatorname{SPLE}(X, f, S)$. The objects of $\operatorname{SPLE}(X, f, S)$ are pairs $(g, M)$ such that $\langle X g\rangle=M$ and

commutes, where $M$ is a strongly T-proper left Ehresmann monoid.

## Strongly $T$-proper Left Ehresmann Monoids

Let $M$ be a left Ehresmann monoid with $M=\langle T \cup E\rangle_{(2,1,0)}$ and $T$ a submonoid. We say that $M$ is strongly $T$-proper if for any $u, v \in T$,

$$
u \sigma_{E} v \Rightarrow u^{\dagger} v=v^{\dagger} u
$$

Let $(X, f)$ be a presentation of a fixed monoid $S$. Then we form a category $\operatorname{SPLE}(X, f, S)$.

## Strongly $T$-proper Left Ehresmann Monoids

Let $M$ be a left Ehresmann monoid with $M=\langle T \cup E\rangle_{(2,1,0)}$ and $T$ a submonoid. We say that $M$ is strongly $T$-proper if for any $u, v \in T$,

$$
u \sigma_{E} v \Rightarrow u^{\dagger} v=v^{\dagger} u
$$

Let $(X, f)$ be a presentation of a fixed monoid $S$. Then we form a category $\operatorname{SPLE}(X, f, S)$. The objects of $\operatorname{SPLE}(X, f, S)$ are pairs $(g, M)$ such that $\langle X g\rangle=M$ and

commutes, where $M$ is a strongly $T$-proper left Ehresmann monoid.

## Strongly $T$-proper Left Ehresmann Monoids

A morphism in $\operatorname{SPLE}(X, f, S)$ from $(g, M)$ to $(h, N)$ is a morphism $\theta: M \rightarrow N$ such that the diagram

commutes.
The category $\operatorname{SPLE}(X, f, S)$ is called the category of $X$-generated strongly
T-proper left Ehresmann monoids with maximum mongid jmage

## Strongly $T$-proper Left Ehresmann Monoids

A morphism in $\operatorname{SPLE}(X, f, S)$ from $(g, M)$ to $(h, N)$ is a morphism $\theta: M \rightarrow N$ such that the diagram

commutes.
The category $\operatorname{SPLE}(X, f, S)$ is called the category of $X$-generated strongly $T$-proper left Ehresmann monoids with maximum monoid image $S$.

## Strongly $T$-proper Left Ehresmann Monoids

Fact3: Let $(X, f, S)$ be a presentation of a monoid $S$. Then $F L E(X) / \rho^{*}$ is the initial object in $\operatorname{SPLE}(X, f, S)$, where

$$
\rho=\left\{u^{\dagger} v=v^{\dagger} u \text {, whenever } u, v \in X^{*} \text { and } u f=v f \text { in } S\right\}
$$

and $\rho^{*}$ is the congruence on $\operatorname{FLE}(X)$ generated by $\rho$.
Problem: Show how to directly solve the word problem for $F L E(X) / \rho^{*}$

## Strongly $T$-proper Left Ehresmann Monoids

Fact3: Let $(X, f, S)$ be a presentation of a monoid $S$. Then $F L E(X) / \rho^{*}$ is the initial object in $\operatorname{SPLE}(X, f, S)$, where

$$
\rho=\left\{u^{\dagger} v=v^{\dagger} u \text {, whenever } u, v \in X^{*} \text { and } u f=v f \text { in } S\right\}
$$

and $\rho^{*}$ is the congruence on $\operatorname{FLE}(X)$ generated by $\rho$.
Problem: Show how to directly solve the word problem for $F L E(X) / \rho^{*}$.

## Edge-labelled Directed Trees

$X:=$ a non-empty set


## 1-rooted c-graphs

$S^{1}:=$ a monoid such that $a b \neq 1_{S}$ for all $a, b \in S$
$f: X \rightarrow S$ with $S=\langle X f\rangle \quad X, C, V:=$ non-empty sets


## 1-rooted c-graphs

$S^{1}:=$ a monoid such that $a b \neq 1_{S}$ for all $a, b \in S$
$f: X \rightarrow S$ with $S=\langle X f\rangle \quad X, C, V:=$ non-empty sets
$\bullet(\{q\},\{ \})$
$(\{1\},\{\mathrm{B}\})\left(\{\mathrm{x}\}, \frac{b}{\{ \})(\{\mathrm{y}\}} \cdot \frac{b}{\{ \})} \bullet(\{\mathrm{z}\},\{\mathrm{R}\})\right.$

## Pinching Methods

Rule 1: a linear path starting with a branching vertex


Suppose that $(a) f=(a b) f$

## Pinching Methods

Rule 1: a linear path starting with a branching vertex


Suppose that (a)f=(ab)f.

## Pinching Methods

Rule 1: a linear path starting with a branching vertex


Suppose that $(a) f=(a b) f$.

## Pinching Methods

Rule 1: a linear path starting with a branching vertex
Suppose that $(a) f=(a b) f$.


## Pinching Methods

Rule 2: two linear paths starting with the same branching vertex


Suppose that $(a) f=(a b) f$ and $(c) f=(d) f$.

## Pinching Methods

Rule 2: two linear paths starting with the same branching vertex


Suppose that $(a) f=(a b) f$ and $(c) f=(d) f$

## Pinching Methods

Rule 2: two linear paths starting with the same branching vertex


Suppose that $(a) f=(a b) f$ and $(c) f=(d) f$.

## Pinching Methods

Rule 2: two linear paths starting with the same branching vertex Suppose that $(a) f=(a b) f$ and $(c) f=(d) f$.


## Reducing a Pinched Graph

Examples of allowed retractions:


## Case I: Circles

## Reducing a Pinched Graph

Examples of allowed retractions:


Case I: Circles

## Reducing a Pinched Graph: Step 1-Retraction

## Case I: Circles



## Case II: Parallel paths I (no tails)

## Reducing a Pinched Graph: Step 1-Retraction

## Case I: Circles



Case II: Parallel paths I (no tails)

## Reducing a Pinched Graph: Step 1-Retraction



## Case III: Parallel paths II (containing tails)

## Reducing a Pinched Graph: Step 1-Retraction



Case III: Parallel paths II (containing tails)

## Reducing a Pinched Graph: Step 1-Retraction



## Reducing a Pinched Graph: Step 1-Retraction



Case IV: Tails

## Reducing a Pinched Graph: Step 1-Retraction



## Reducing a Pinched Graph: Step 2-coloring

Let $\Sigma$ be a pinched 1-rooted c-graph.
If there exists an A-subgraph of $\Sigma$, which is a linear path and a tail of a B-subgraph of $\Sigma$, then we color the A-subgraph in B and denote it by $\mathbf{d}(\Sigma)$.


## Reducing a Pinched Graph: Step 2-coloring

Let $\Sigma$ be a pinched 1-rooted c-graph.
If there exists an A-subgraph of $\Sigma$, which is a linear path and a tail of a B-subgraph of $\Sigma$, then we color the A-subgraph in B and denote it by $\mathbf{d}(\Sigma)$.


## Reducing a Pinched Graph: Step 2-coloring

Let $\Sigma$ be a pinched 1-rooted c-graph.
If there exists an A-subgraph of $\Sigma$, which is a linear path and a tail of a B-subgraph of $\Sigma$, then we color the A-subgraph in B and denote it by $\mathbf{d}(\Sigma)$.


## Reducing a Pinched Graph: Step 3-pinching

$\operatorname{pd}(\Sigma):=$ the pinched graph of $\mathbf{d}(\Sigma)$.
-(\{q\}, $\})$
$(\{1\},\{\mathrm{B}\}) \mathrm{a}$
Suppose that $(e) f=(e d) f$.

## Reducing a Pinched Graph: Step 3-pinching

$\operatorname{pd}(\Sigma):=$ the pinched graph of $\mathbf{d}(\Sigma)$.

- (\{q\}, $\})$
$(\{1\},\{\mathrm{B}\}) \mathrm{a}$
Suppose that $(e) f=(e d) f$.


## Reducing a Pinched Graph: Step 3-pinching

$\mathbf{p d}(\Sigma):=$ the pinched graph of $\mathbf{d}(\Sigma)$.
Suppose that $(e) f=(e d) f$.


A pinched 1-rooted c-graph $\Sigma$ is reduced if there is no any non-trivial retract of $\Sigma$ and $\operatorname{pd}(\Sigma)=\Sigma$.

## Reducing a Pinched Graph: Step 3-pinching

$\mathbf{p d}(\Sigma):=$ the pinched graph of $\mathbf{d}(\Sigma)$.
Suppose that $(e) f=(e d) f$.


A pinched 1-rooted c-graph $\Sigma$ is reduced if there is no any non-trivial retract of $\Sigma$ and $\mathbf{p d}(\Sigma)=\Sigma$.

## A Unique Reduced Pinched Graph in Each $\rho^{*}$-class

Lemma 1 Let $P, Q$ be 1-rooted $c$-graphs and $U, V$ be linear 1-rooted $c$-graphs satisfying that $U f=V f$. If $\Sigma=P \times U^{\dagger} \times V \times Q$ and $\Gamma=P \times V^{\dagger} \times U \times Q$, then $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$.

Lemma 2 If $\Sigma$ is an 1-rooted $c$-graph and $\Gamma$ is a retract of $\Sigma$, then $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$

where $P_{i}, Q_{i}$ are 1-rooted c-graphs and $U_{i}, V_{i}$ are linear 1-rooted c-graphs satisfying that $U_{i} f=V_{i} f$.

## A Unique Reduced Pinched Graph in Each $\rho^{*}$-class

Lemma 1 Let $P, Q$ be 1-rooted $c$-graphs and $U, V$ be linear 1-rooted $c$-graphs satisfying that $U f=V f$. If $\Sigma=P \times U^{\dagger} \times V \times Q$ and $\Gamma=P \times V^{\dagger} \times U \times Q$, then $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$.

Lemma 2 If $\Sigma$ is an 1-rooted $c$-graph and $\Gamma$ is a retract of $\Sigma$, then $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$.

where $P_{i}, Q_{i}$ are 1-rooted c-graphs and $U_{i}, V_{i}$ are linear 1-rooted c-graphs satisfying that $U_{i} f=V_{i} f$.

## A Unique Reduced Pinched Graph in Each $\rho^{*}$-class

Lemma 1 Let $P, Q$ be 1-rooted $c$-graphs and $U, V$ be linear 1-rooted $c$-graphs satisfying that $U f=V f$. If $\Sigma=P \times U^{\dagger} \times V \times Q$ and $\Gamma=P \times V^{\dagger} \times U \times Q$, then $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$.

Lemma 2 If $\Sigma$ is an 1-rooted $c$-graph and $\Gamma$ is a retract of $\Sigma$, then $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$.

Theorem 1 If $\Sigma$ and $\Gamma$ are 1-rooted $c$-graphs with $\Sigma \rho^{*} \Gamma$, then $\boldsymbol{r p}(\Sigma)=\mathbf{r p}(\Gamma)$.
Remark: $\Sigma \rho^{*} \Gamma$ if and only if there exists a sequence

$$
\begin{aligned}
& \Sigma=P_{1} U_{1}^{\dagger} V_{1} Q_{1} \quad P_{2} V_{2}^{\dagger} U_{2} Q_{2}=\cdots=P_{n} V^{\dagger} U_{n} Q_{n} \\
& P_{1} V_{1}^{\dagger} U_{1} Q_{1}=P_{2} U_{2}^{\dagger} V_{2} Q_{2} \quad \cdots \quad P_{n} U_{n}^{\dagger} V_{n} Q_{n}=\Gamma
\end{aligned}
$$

where $P_{i}, Q_{i}$ are 1-rooted c-graphs and $U_{i}, V_{i}$ are linear 1-rooted c-graphs satisfying that $U_{i} f=V_{i} f$.

## Unpinching methods

Examples:


## Unpinching methods

## Step 1:



## Unpinching methods

Step 2:
$(\{1\},\{B\}) \bullet \xrightarrow{\cap^{b}}(\{x, y\},\{R\})$
$\Downarrow$
$(\{1\},\{B\}) \bullet \xrightarrow\left[(\{x\}]{a}, \frac{b}{\{ \})} \bullet(\{y\},\{R\})\right.$
$(\{1\},\{B\}) \bullet \xrightarrow\left[(\{y\}]{a}, \frac{b}{\{ \})} \bullet(\{x\},\{R\})\right.$

## Unpinching methods

Step 2:
$(\{x, y\},\{R\}) \bullet \xrightarrow[\Downarrow]{d} \bullet(\{v, w\},\{G\})$
$(\{x, y\},\{R\}) \bullet \underbrace{\substack{c}}_{(\{w\}} \stackrel{(\{v\}}{d},\{ \})$

$(\{x, y\},\{R\}) \bullet \underbrace{d_{d}^{c}}_{(\{v\}} \bullet\{G\})$


## Unpinching methods

## Step 2:





## Unpinching Methods

Step 3:



## Unpinching Graphs Being $\rho^{*}$-related

Theorem 2 Let $\Gamma$ be a pinched graph, and let $\Gamma_{1}$ and $\Gamma_{2}$ be unpinching graphs of $\Gamma$. Then $\Gamma_{1} \rho^{*} \Gamma_{2}$.
outline of the proof

- For each $c$-subgraph $K$ of $\Gamma$, any two unpinching graphs of $K$ are $\rho^{*}$-related.
- For any connected c-subgraphs $K_{1}$ and $K_{2}$ of $\Gamma$, if $W_{1}$ and $W_{2}$ are unpinching graphs of $K_{1}$, and $U_{1}$ and $U_{2}$ are unpinching graphs of $K_{2}$, then $W_{1} U_{1} \rho^{*} W_{2} U_{2}$.

Proposition 1 Let $\Sigma$ be a 1 -rooted c-graph. Then $\Sigma \rho^{*}$ unp $(\Sigma)$

## Unpinching Graphs Being $\rho^{*}$-related

Theorem 2 Let $\Gamma$ be a pinched graph, and let $\Gamma_{1}$ and $\Gamma_{2}$ be unpinching graphs of $\Gamma$. Then $\Gamma_{1} \rho^{*} \Gamma_{2}$.
outline of the proof

- For each $c$-subgraph $K$ of $\Gamma$, any two unpinching graphs of $K$ are $\rho^{*}$-related.
- For any connected $c$-subgraphs $K_{1}$ and $K_{2}$ of $\Gamma$, if $W_{1}$ and $W_{2}$ are unpinching graphs of $K_{1}$, and $U_{1}$ and $U_{2}$ are unpinching graphs of $K_{2}$, then $W_{1} U_{1} \rho^{*} W_{2} U_{2}$.

Proposition 1 Let $\Sigma$ be a 1-rooted c-graph. Then $\Sigma \rho^{*} \mathbf{u n p}(\Sigma)$.

## Word Problems

Theorem 3 If $\Sigma$ and $\Gamma$ are 1-rooted c-graphs with $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$, then $\Sigma \rho^{*}$ Г.

Theorem 1 If $\Sigma$ and $\Gamma$ are 1-rooted $c$-graphs with $\Sigma \rho^{*} \Gamma$, then $\operatorname{rp}(\Sigma)=\mathbf{r p}(\Gamma)$.

Theorem 4 If $\Sigma$ and $\Gamma$ are 1 -rooted $c$-graphs, then $\Sigma p^{*} \Gamma$ if and only if

## Word Problems

Theorem 3 If $\Sigma$ and $\Gamma$ are 1-rooted c-graphs with $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$, then $\Sigma \rho^{*}$ Г.

Theorem 1 If $\Sigma$ and $\Gamma$ are 1-rooted $c$-graphs with $\Sigma \rho^{*} \Gamma$, then $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$.

Theorem 4 If $\Sigma$ and $\Gamma$ are 1-rooted $c$-graphs, then $\Sigma \rho^{*} \Gamma$ if and only if

## Word Problems

Theorem 3 If $\Sigma$ and $\Gamma$ are 1-rooted c-graphs with $\mathbf{r p}(\Sigma)=\mathbf{r p}(\Gamma)$, then $\Sigma \rho^{*}$ Г.

Theorem 1 If $\Sigma$ and $\Gamma$ are 1-rooted $c$-graphs with $\Sigma \rho^{*} \Gamma$, then $\boldsymbol{r p}(\Sigma)=\mathbf{r p}(\Gamma)$.

Theorem 4 If $\Sigma$ and $\Gamma$ are 1-rooted $c$-graphs, then $\Sigma \rho^{*} \Gamma$ if and only if $\boldsymbol{r p}(\Sigma)=\boldsymbol{r p}(\Gamma)$.

